

Third Semester B.E. Degree Examination, Dec.2013/Jan.2014 Engineering Mathematics - III

Time: 3 hrs.

Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

Find the Fourier series expansion of the function f(x) = |x| in $(-\pi, \pi)$, hence deduce that $\frac{\pi^2}{8} = \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}.$ (06 Marks)

b. Obtain the half-range cosine series for the function, $f(x) = (x-1)^2$ in the interval $0 \le x \le 1$ and hence show that $\pi^2 = 8\left\{\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots\right\}$ (07 Marks)

Compute the constant term and first two harmonics of the Fourier series of f(x) given by, (07 Marks)

X	0	π	2π	π	4π	5π	2π
		3	3		3	3	
f(x)	1.0	1.4	1.9	1.7	1.5	1.2	1.0

Obtain the Fourier cosine transform of $f(x) = \frac{1}{1 + x^2}$. (06 Marks)

b. Find the Fourier transform of $f(x) =\begin{cases} 1 - x^2 & \text{for } |x| \le 1 \\ 0 & \text{for } |x| > 1 \end{cases}$ and evaluate $\int_{0}^{\infty} \frac{x \cos x - \sin x}{x^3} dx$.

(07 Marks)

Find the inverse Fourier sine transform of $\frac{s}{1+s^2}$.

(07 Marks)

(06 Marks)

Obtain the various possible solutions of two dimensional Laplace's equation, $u_{xx} + u_{yy} = 0$ 3 by the method of separation of variables.

Solve the one-dimensional wave equation, $C^2 \frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial t^2}$, 0 < x < l under the following

conditions (i)

u(0, t) = u(l, t) = 0 (ii) $u(x, 0) = \frac{u_0 x}{l}$ where u_0 is constant

(iii)
$$\frac{\partial u}{\partial t}(x,0) = 0$$
. (07 Marks)

c. Obtain the D'Almbert's solution of the wave equation $u_{tt} = C^2 u_{xx}$ subject to the conditions $u(x,0) = f(x)$ and $\frac{\partial u}{\partial t}(x,0) = 0$. (06 Marks)

Find the best values of a, b, c, if the equation $y = a + bx + cx^2$ is to fit most closely to the following observations. (07 Marks)

 1
 2
 3
 4
 5

 10
 12
 13
 16
 19

b. Solve the following by graphical method to maximize z = 50x + 60y subject to the constraints, $2x + 3y \le 1500$, $3x + 2y \le 1500$, $0 \le x \le 400$ and $0 \le y \le 400$. (06 Marks)

c. By using Simplex method, maximize $P = 4x_1 - 2x_2 - x_3$ subject to the constraints, $x_1 + x_2 + x_3 \leq 3 \,, \, \, 2x_1 + 2x_2 + x_3 \leq 4 \,, \, \, x_1 - x_2 \leq 0 \,, \, \, x_1 \geq 0 \, \, \, \text{and} \, \, \, x_2 \geq 0 \,.$ (07 Marks)

PART - B

- 5 a. Using Newton-Raphson method, find a real root of $x \sin x + \cos x = 0$ nearer to π , carryout three iterations upto 4-decimals places. (07 Marks)
 - b. Find the largest eigen value and the corresponding eigen vector of the matrix,

$$\begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

By using the power method by taking the initial vector as $\begin{bmatrix} 1 & 1 \end{bmatrix}^T$ carryout 5-iterations.

(07 Marks)

c. Solve the following system of equations by Relaxation method:

$$12x + y + z = 31$$
; $2x + 8y - z = 24$; $3x + 4y + 10z = 58$

(06 Marks)

6 a. A survey conducted in a slum locality reveals the following information as classified below,

Income per day in Rupees 'x'	Under 10	10 - 20	20 – 30	30 - 40	40 - 50
Numbers of persons 'y'	20	45	115	210	115

Estimate the probable number of persons in the income group 20 to 25.

(07 Marks)

Determine f(x) as a polynomials in x for the data given below by using the Newton's divided difference formula.

х	2	4	5 .	6	8	10
f(x)	10	96	196	350	868	1746

c. Evaluate $\int_{0}^{1} \frac{x}{1+x^2} dx$ by using Simpson's $\left(\frac{1}{3}\right)^{rd}$ rule by taking 6 – equal strips and hence

deduce an approximate value of log, 2.

(06 Marks)

- 7 a. Solve the wave equation, $\frac{\partial^2 u}{\partial t^2} = 4 \frac{\partial^2 u}{\partial x^2}$, subject to u(0, t) = 0, u(4, t) = 0, $u_t(x, 0) = 0$ and u(x, 0) = x(4 x) by taking h = 1, K = 0.5 upto 4-steps.
 - b. Solve numerically the equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ subject to the conditions, u(0, t) = 0 = u(1, t),

 $t \ge 0$ and $u(x, 0) = \sin \pi x$, $0 \le x \le 1$, carryout the computation for two levels taking $h = \frac{1}{3}$

and
$$K = \frac{1}{36}$$
. (07 Marks)

c. Solve $u_{xx} + u_{yy} = 0$ in the following square region with the boundary conditions as indicated in the Fig. Q7 (c). (06 Marks)

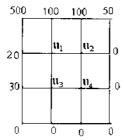


Fig. Q7 (c)

- 8 a. Find the z-transform of, (i) $\sinh n\theta$
- (ii) $\cosh n\theta$
- (iii) n^2
- (07 Marks)

- a. Find the z-transform of, (1) sinh n
 - b. Find the inverse z-transform of, $\frac{2z^2 + 3z}{(z+2)(z-4)}$.

(06 Marks)

- c. Solve the difference equation, $y_{n+2} + 6y_{n+1} + 9y_n = 2^n$
 - with $y_0 = y_1 = 0$ by using z-transform.

(07 Marks)